Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 13(9)2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34578277

RESUMO

The genetic diversity of baculoviruses provides a sustainable agronomic solution when resistance to biopesticides seems to be on the rise. This genetic diversity promotes insect infection by several genotypes (i.e., multiple infections) that are more likely to kill the host. However, the mechanism and regulation of these virus interactions are still poorly understood. In this article, we focused on baculoviruses infecting the codling moth, Cydia pomonella: two Cydia pomonella granulovirus genotypes, CpGV-M and CpGV-R5, and Cryptophlebia peltastica nucleopolyhedrovirus (CrpeNPV). The influence of the order of ingestion of the virus genotypes, the existence of an ingestion delay between the genotypes and the specificity of each genotype involved in the success of multiple infection were studied in the case of Cydia pomonella resistance. To obtain a multiple infection in resistant insects, the order of ingestion is a key factor, but the delay for ingestion of the second virus is not. CrpeNPV cannot substitute CpGV-R5 to allow replication of CpGV-M.


Assuntos
Comportamento Alimentar , Granulovirus/genética , Granulovirus/fisiologia , Vírus Auxiliares/fisiologia , Mariposas/virologia , Replicação Viral , Animais , Variação Genética , Vírus Auxiliares/genética
2.
Viruses ; 12(1)2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906433

RESUMO

Many steps in the baculovirus life cycle, from initial ingestion to the subsequent infection of all larval cells, remain largely unknown; primarily because it has hitherto not been possible to follow individual genomes and their lineages. Use of ANCHORTM technology allows a high intensity fluorescent labelling of DNA. When applied to a virus genome, it is possible to follow individual particles, and the overall course of infection. This technology has been adapted to enable labelling of the baculovirus Autographa californica Multiple NucleoPolyhedroVirus genome, as a first step to its application to other baculoviruses. AcMNPV was modified by inserting the two components of ANCHORTM: a specific DNA-binding protein fused to a fluorescent reporter, and the corresponding DNA recognition sequence. The resulting modified virus was stable, infectious, and replicated correctly in Spodoptera frugiperda 9 (Sf9) cells and in vivo. Both budded viruses and occlusion bodies were clearly distinguishable, and infecting cells or larvae allowed the infection process to be monitored in living cells or tissues. The level of fluorescence in the culture medium of infected cells in vitro showed a good correlation with the number of infectious budded viruses. A cassette that can be used in other baculoviruses has been designed. Altogether our results introduce for the first time the generation of autofluorescent baculovirus and their application to follow infection dynamics directly in living cells or tissues.


Assuntos
DNA Viral/metabolismo , Nucleopoliedrovírus/fisiologia , Replicação Viral , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fluorometria , Genoma Viral/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Larva/virologia , Microscopia de Fluorescência , Células Sf9 , Spodoptera
3.
Viruses ; 11(8)2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390849

RESUMO

Cydia pomonella granulovirus, in particular CpGV-M isolate, is used as a biological control against the codling moth (CM), Cydia pomonella. As a result of intensive control over the years, codling moth populations have developed resistance against this isolate. This resistance is now called type I resistance. Isolates, among them, CpGV-R5, have been found that are able to overcome type I resistance. Both CpGV-M and CpGV-R5 are used in orchards to control the codling moth. High resolution melting (HRM) has been adapted to differentiate between CpGV-M and CpGV-R5 isolates. Specific PCR primers have been designed for the CpGV p38 gene, encompassing the variable region responsible for the ability to overcome resistance. Because each amplicon has a specific melting point, it is possible to identify the CpGV-M and CpGV-R5 genotypes and to quantify their relative proportion. This method has been validated using mixtures of occlusion bodies of each isolate at various proportions. Then, the HRM has been used to estimate the proportion of each genotype in infected larvae or in occlusion bodies (OBs) extracted from dead larvae. This method allows a rapid detection of genotype replication and enables the assessment of either success or failure of the infection in field conditions.


Assuntos
Genótipo , Granulovirus/classificação , Granulovirus/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase em Tempo Real , Animais , Hemolinfa/virologia , Larva/virologia , Técnicas de Amplificação de Ácido Nucleico/normas , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Temperatura de Transição , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...